actualidad, opinion, variedades.

¿Qué teorías de Einstein se han confirmado y cuáles aún son un enigma sin resolver?…


https://www.infobae.com/new-resizer/3zt18RcwCDB925Wxh1_JVsCCV7E=/992x992/filters:format(webp):quality(85)/cloudfront-us-east-1.images.arcpublishing.com/infobae/4XORF5TIHBHLLF5EYQBPRPNPS4.jpg

Infobae/abc(I.C.CarrionLas predicciones de Albert Einstein aún siguen asombrando a la comunidad científica más de un siglo después de que las formulara, tanto las ya confirmadas como las que seguimos explorando.

Albert Einstein está en las primeras posiciones de la lista de los científicos más famosos e icónicos de la historia. Sus teorías de la Relatividad Especial de 1905 y de la Relatividad General de 1915 literalmente revolucionaron la física.

Fue más allá de la teoría de la gravedad de Newton, que estuvo vigente desde 1687. Einstein introdujo además sus famosos experimentos mentales, que también pusieron a prueba los incipientes desarrollos de la mecánica cuántica.

Sus aportaciones en este campo merecieron el premio Nobel en Física, que le otorgaron en 1921 por el efecto fotoeléctrico.

Mucha gente cree que el premio Nobel por la Relatividad General, que no le dieron, es una gran deuda pendiente. En esta nueva teoría, la gravedad se entiende como deformación o curvatura del espacio-tiempo, provocada por la distribución de masas y energías.

Cuanta más masa se acumule en menos volumen, más se deforma o curva el espacio-tiempo a su alrededor. Cualquier otra partícula u objeto que pase cerca de estos objetos siente esta curvatura, lo cual hace que su trayectoria cambie.

https://static3.abc.es/media/ciencia/2022/05/13/file-20220503-13-nf5k54-ki8G--510x349@abc.png

(Una de las predicciones de Einstein en la relatividad general fue que el espacio-tiempo no es ‘plano’ sino que está curvado por la presencia de cuerpos masivos )

Predicción confirmada: el día que se observó la curvatura del espacio-tiempoAlgunas de las predicciones o consecuencias de la Relatividad General se pusieron a prueba en poco tiempo. En 1919, tan sólo 4 años tras la publicación de la teoría, tuvo lugar un eclipse total de Sol. Era el acontecimiento idóneo para poner a prueba la curvatura del espacio-tiempo.

Hubo varias expediciones científicas que viajaron hasta Brasil y la costa oeste africana para tomar las mejores fotografías y datos de ese eclipse y, sobre todo, de las estrellas que rodeaban el Sol.

El objeto más masivo y compacto que tenemos en nuestras cercanías es el Sol. Lo que se quería comprobar era si la luz de estrellas lejanas se veía afectada por la curvatura del espacio-tiempo que genera el Sol al pasar cerca de éste. Si fuera así, su trayectoria se desviaría ligeramente de una línea recta, haciendo que la posición aparente de la estrella en el cielo sufriera un pequeño cambio. La confirmación de este efecto, consistente con las medidas del eclipse de 1919, hizo a Einstein mundialmente famoso.

El día del eclipse en Sobral, en Brasil. Sólo un minuto antes de la cobertura total del Sol, el viento alejó las nubes y los investigadores tuvieron cerca de 4 minutos para hacer 27 fotografías del cielo, mostrando las 12 estrellas que planeaban observar

El día del eclipse en Sobral, en Brasil. Sólo un minuto antes de la cobertura total del Sol, el viento alejó las nubes y los investigadores tuvieron cerca de 4 minutos para hacer 27 fotografías del cielo, mostrando las 12 estrellas que planeaban observar

Las dudas de Einstein: las vibraciones del espacio-tiempo

Para demostrar experimentalmente otras predicciones de la Relatividad General hemos necesitado esperar bastante más tiempo. En 1916 Einstein comenzó a analizar con mucho detalle sus ecuaciones, y en particular una serie de términos que, tras una pequeña simplificación, se parecen enormemente a una ecuación de ondas: la misma estructura que aparece en múltiples sistemas físicos donde tenemos una perturbación que se propaga transportando energía.

En este caso, las ecuaciones dicen que lo que vibra es el propio espacio-tiempo, y a estas perturbaciones las llamamos ondas gravitatorias.

¿Podrían observarse? ¿Habría alguna manera de “escuchar” las vibraciones del espacio-tiempo?

Durante su vida, Einstein dudó sobre la existencia real de este fenómeno (¿sería quizás un artefacto matemático pero sin realización física?). Einstein no fue la primera ni la única eminencia en física que dudó de las consecuencias matemáticas de su teoría. Tuvo sus más y sus menos con colegas y prestigiosas revistas científicas que han dado lugar a interesantísimos relatos.

Sea como fuere, y con la contribución de destacadas personalidades, finalmente se entendió que efectivamente las ondas gravitatorias eran una predicción real de la teoría. Se analizaron las propiedades de las mismas y solamente quedaba por ver si la carrera tecnológica para comprobar experimentalmente su existencia daba sus frutos.

Predicción confirmada: las ondas gravitatorias se “escucharon” al fin

La amplitud de estas ondas es tan tan tan (se pueden poner todos los “tan” que se quieran) extremadamente débil que el propio Einstein no tenía mucha confianza en que fuese posible su detección algún día. Cada una de las pruebas a las que se sometía a la Relatividad General no era capaz de encontrar discrepancias, pero no detectar ondas gravitatorias o detectarlas con propiedades diferentes a las teorizadas supondría una demostración de que esta teoría no reproducía fielmente la realidad: el guante estaba echado.

El éxito del desarrollo tecnológico necesitó de décadas, y de los habituales intentos fallidos que en ciencia no siempre se mencionan, como los pioneros experimentos del físico Joseph Weber con las barras resonantes en los años 60.

Los instrumentos que han sido capaces de conseguir superar finalmente este reto son los interferómetros láser de brazos kilométricos.

https://estaticos.muyinteresante.es/uploads/images/article/56bcb3775bafe8e4f2a5f4ba/ondas-gravita_0.jpg

La primera detección de ondas gravitatorias tuvo lugar en 2015, fue realizada por los observatorios estadounidenses LIGO y supuso un acontecimiento literalmente histórico.

Las ondas gravitatorias detectadas estaban asociadas además a otra de las consecuencias de la Relatividad General: procedían de la fusión de dos agujeros negros de unas 36 y 29 veces la masa del Sol, y atravesaron los detectores tras viajar unos 1300 millones de años-luz.

El observatorio europeo Virgo se unió a la toma de datos en el verano de 2017, con una triple detección de una fusión de estrellas de neutrones que incluyó a las ondas gravitatorias en la astronomía de multi-mensajeros. El observatorio KAGRA se unirá a la red global en el próximo periodo de observación, previsto para diciembre de este año.

Tenemos ya un total de 90 eventos confirmados, todos ellos tienen como escenario astrofísico la fusión de dos objetos compactos: parejas de agujeros negros, parejas de estrellas de neutrones o bien parejas mezcladas de un agujero negro y una estrella de neutrones.

La puerta de la investigación está abierta a objetos compactos de naturaleza diferente, y las ondas gravitatorias que generen nos pueden dar pistas sobre su estructura y propiedades. Estamos impacientes por ver las nuevas sorpresas que están por llegar.

La constante cosmológica: ¿la mayor “pifia” de Einstein?

En el capítulo de las predicciones de Einstein no podemos olvidar la famosa constante cosmológica, que también le generó contradicciones. Esta constante, sus propiedades y si es capaz de modelar fielmente la evolución y expansión del universo a la luz de futuros datos es la página del libro que se está escribiendo ahora mismo.

https://img.europapress.es/fotoweb/fotonoticia_20180711180402_1200.jpg

Einstein introdujo esta constante en sus ecuaciones para forzar (por creencias personales) un modelo de universo estático, una especie de “energía repulsiva” sin la cual el universo terminaría colapsando por el propio efecto de la gravedad.

Sin embargo, tras las observaciones en 1931 del físico Edwin Hubble sobre la expansión del universo, Einstein consideró su propuesta como “la mayor pifia” de su obra científica. ¿Lo era realmente?

El interés por la constante cosmológica que introdujo Einstein volvió a resurgir con las teorías cuánticas de campos, pues éstas predicen una energía de vacío que se puede comportar, a todos los efectos, como la constante cosmológica que predijo.

Así que parece que Einstein, de nuevo, volvió a acertar.

Por qué el agujero negro Sagitario A* confirma una predicción de Einstein

La primera especulación sobre la existencia de los agujeros negros salió directamente de la Teoría de la Relatividad de Albert Einstein, formulada en 1915.

Parece raro, pero el mismo científico pensaba que la idea de la existencia de un cuerpo así era muy rara para materializarse verdaderamente en el universo.

“Por eso, asumió que era un artefacto de las matemáticas”, asegura el físico Daniel Kennefick, coautor del libro An Einstein Encyclopedia (Enciclopedia de Einstein) y No Shadow of Doubt (Sin sombra de duda). En correspondencia con el físico francés en la década de 1920, Einstein descartó la idea de que algo pudiera colapsar para siempre, alcanzar un punto de densidad infinita y atrapar hasta la luz (no usaron el término agujero negro, el cual se popularizó en la década de 1960).

https://www.infobae.com/new-resizer/3Lq5jY3YwuNrt-b4sNI0Kv7j6ZU=/992x558/filters:format(webp):quality(85)/cloudfront-us-east-1.images.arcpublishing.com/infobae/G6AAOKGFDBVIK6GW4LVLF5HO3Y.jpg

Kennefick asegura que se necesitó científicos para superar unas cuantas barreras mentales, a fin de reconocer que los agujeros negros están por ahí, incluida la monstruosidad de las imágenes, la captada hace tres años en la galaxia Messier 87 (M87) y la de ayer de Sagitario A*, el agujero negro que se encuentra en el centro de nuestra galaxia, la Vía Láctea.

El brillo en forma de anillo no es el agujero negro, sino que delinea una especie de sombra de la región conocida como horizonte de sucesos, dentro de la cual ni la luz puede escapar.

El horizonte de sucesos es casi tan grande como nuestro sistema solar, pero la masa de todos esos soles podría caber en una mota.

Luego de años de trabajo, la colaboración internacional de EHT develó por primera vez una imagen del agujero negro supermasivo Sagitario A*, ubicado en el centro de nuestra galaxia. La zona oscura central, denominada la sombra del agujero negro, está rodeada por un anillo de gas brillante que ocupa un ángulo en el cielo de sólo 50 millonésimas de segundo de arco – como si quisiéramos ver una dona apoyada en la superficie de la Luna.

Esta resolución se logró formando un ‘telescopio virtual’ del tamaño de la Tierra”, explicó el licenciado Javier Badía del Instituto de Astronomía y Física del Espacio (IAFE).

Y agregó: “La primera imagen de un agujero negro, el ubicado en la galaxia M87, fue obtenida hace tres años. Ambas observaciones se suman a la larga lista de confirmaciones de la Teoría de la Relatividad General de Einstein”.

https://www.infobae.com/new-resizer/19tHZN7Bc9zsAhizh-3OzgrfKbg=/arc-anglerfish-arc2-prod-infobae/public/MPQU4NM2M5ASTBZ2F76WILDF5E.jpg

Los agujeros negros fueron una consecuencia no deseada de la teoría general de la relatividad de Albert Einstein, que atribuye la gravedad a la deformación del espacio y el tiempo por la materia y la energía, como un colchón se hunde debajo de una cama.

La perspicacia de Einstein condujo a una nueva concepción del cosmos, en la que el espacio-tiempo podía estremecerse, doblarse, desgarrarse, expandirse, arremolinarse e incluso desaparecer para siempre en las fauces de un agujero negro, una entidad con una gravedad tan fuerte que ni siquiera la luz podía escapar de eso.

Un agujero negro es una región del espacio tiempo, que tiene tanta gravedad, que impide que los rayos de luz puedan escapar del mismo. Cuando uno tira una piedra hacia arriba, escapa de la gravedad que la atrae y luego cae.

Pero dentro de un agujero negro nada puede escapar, ni siquiera una pequeña piedra lanzada con mucha energía o velocidad, porque es tan fuerte su fuerza gravitatoria que nada puede salir de él”, resaltó el argentino Luis Lehner, uno de los científicos que estuvo involucrado directamente en el descubrimiento del agujero negro de 2019.

Y agregó: “El próximo paso es entender mejor a los agujeros negros y tratar de ver los límites de la Teoría General de la Relatividad de Albert Einstein, que hoy por hoy sigue siendo una teoría útil para describir estos extremos gravitatorios extremos. Y eventualmente, si encontramos diferencias con la teoría de Einstein, poder elaborar una nueva que la suplante”.

https://www.infobae.com/new-resizer/PwKbfMkQ3aubm6iqSm6mMKt31x0=/992x661/filters:format(webp):quality(85)/cloudfront-us-east-1.images.arcpublishing.com/infobae/A2S7SPDFU5CNZEKHLY2DINJH5A.jpg

La bola de oro utilizada en comparación de tamaño con una moneda de 1 centavo. Según la teoría de la relatividad general de Einstein, toda masa dobla el espacio-tiempo

Según la ley de la relatividad general publicada en 1915 por Albert Einstein, que permite explicar su funcionamiento, la atracción gravitacional de estos “monstruos” cósmicos es tal que no se les escapa nada: ni la materia, ni la luz, sea cual sea su longitud de onda.

Por lo tanto, no se pueden observar directamente. Además, la fuerza de gravedad que emana del agujero negro es tan fenomenal que no se ha logrado recrear en laboratorio.

Nos sorprendió lo bien que el tamaño del anillo concordaba con las predicciones de la teoría de la relatividad general de Einstein”, explicó ayer en un comunicado de prensa Geoffrey Bower, científico que dirigió los estudio del Telescopio del Horizonte de Sucesos (Event Horizon Telescope o EHT en inglés).

“Estas observaciones sin precedentes han mejorado enormemente nuestra comprensión de lo que sucede en el mismo centro de nuestra galaxia y así ofrecer nuevos conocimientos sobre cómo estos agujeros negros gigantes interactúan con su entorno”, agregó.

El astrofísico español José Luis Gómez, uno de los responsables de la obtención de la primera imagen del agujero negro de nuestra galaxia, explicó en ABC la ciencia detrás de la fotografía: “Ahora tenemos imágenes de dos agujeros negros distintos, el que se encuentra en el centro de la galaxia M87, obtenida en 2019, y la de Sagitario A*, el del centro de nuestra propia galaxia, la Vía Láctea.

Y resulta que son muy parecidas, lo cual es exactamente lo que esperábamos. La teoría de la relatividad de Einstein predecía que todos los agujeros negros deben tener el mismo aspecto, un anillo circular en el que lo único que cambia es el tamaño, que depende de la masa del agujero negro. Cuanto más grande sea el agujero negro, más grande es el anillo”.

https://www.infobae.com/new-resizer/yWMJmtq8tgGA-WfxFLKJivnJG-I=/992x614/filters:format(webp):quality(85)/cloudfront-us-east-1.images.arcpublishing.com/infobae/KI7DAAIKQNAJHFD4TXS4ETTUVU.webp

Revelaron primera imagen del agujero negro al centro de nuestra galaxia

Conocíamos con precisión la masa de Sagitario A*, cuatro millones de masas solares, y su distancia a la Tierra, por lo que sabíamos que debía tener 52 microsegundos de arco. Y eso es exactamente lo que hemos observado.

Hemos confirmado la teoría de la relatividad con una precisión del 10%. Indistintamente del tamaño, dos agujeros negros se ven iguales. Es una confirmación que hasta ahora nunca se había hecho: la teoría de la relatividad no varía en la escala.

Los agujeros negros son los objetos más extravagantes que uno puede imaginar, máquinas en el tiempo, una puerta fuera de nuestro universo… pero al mismo tiempo son también lo más simple”, agregó el especialista.

Y concluyó: “Esto es el producto del trabajo de más de 300 investigadores repartidos por todo el mundo. Obtener la imagen de Sagitario A* ha sido mucho más difícil que la de M87*. El principal motivo es que la imagen cambia muy rápidamente, de un minuto a otro.

El plasma se mueve a la velocidad de la luz, pero en Sagitario A* el tamaño que tiene que recorrer es mucho más pequeño que en M87*, por lo que da una vuelta a todo el agujero negro en solo unos minutos.

Utilizamos el Telescopio de Horizonte de Sucesos (EHT) durante ocho horas seguidas, un tiempo de exposición muy largo, lo que implica que la imagen puede salir borrosa. Es como querer sacar una foto a un niño que no está quieto.

Hemos dedicado muchos años a idear algoritmos para evitarlo. Aunque la imagen que hemos obtenido es algo más borrosa que la de M87*, aún así lo hemos conseguido”.

nuestras charlas nocturnas.

Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.